KILLEDRuntime Complexity (full) proof of /tmp/tmpx0Ks4Q/4.27.xml
The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).0 CpxTRS↳1 DecreasingLoopProof (⇔, 490 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))
Rewrite Strategy: FULL(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
int(0, s(y)) →+ .(0, int_list(int(0, y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
int(0', 0') → .(0', nil)
int(0', s(y)) → .(0', int(s(0'), s(y)))
int(s(x), 0') → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))
S is empty.
Rewrite Strategy: FULL(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
TRS:
Rules:
int(0', 0') → .(0', nil)
int(0', s(y)) → .(0', int(s(0'), s(y)))
int(s(x), 0') → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))
Types:
int :: 0':s → 0':s → nil:.
0' :: 0':s
. :: 0':s → nil:. → nil:.
nil :: nil:.
s :: 0':s → 0':s
int_list :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
hole_0':s2_0 :: 0':s
gen_nil:.3_0 :: Nat → nil:.
gen_0':s4_0 :: Nat → 0':s(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
int, int_listThey will be analysed ascendingly in the following order:
int_list < int(8) Obligation:
TRS:
Rules:
int(0', 0') → .(0', nil)
int(0', s(y)) → .(0', int(s(0'), s(y)))
int(s(x), 0') → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))
Types:
int :: 0':s → 0':s → nil:.
0' :: 0':s
. :: 0':s → nil:. → nil:.
nil :: nil:.
s :: 0':s → 0':s
int_list :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
hole_0':s2_0 :: 0':s
gen_nil:.3_0 :: Nat → nil:.
gen_0':s4_0 :: Nat → 0':sGenerator Equations:
gen_nil:.3_0(0) ⇔ nil
gen_nil:.3_0(+(x, 1)) ⇔ .(0', gen_nil:.3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))The following defined symbols remain to be analysed:
int_list, intThey will be analysed ascendingly in the following order:
int_list < int